
UNIT-I INTRODUCTION

Virtual Instrumenation-Introduction
Virtual Instrumentation is the use of customizable software and
modular measurement hardware to create user-defined measurement
systems, called virtual instruments.

Computer
Software

Hardware

The technology of Virtual Instruments (cont.)
• Advantages of Virtual Instruments versus Traditional

Instruments

Flexibility
You can easily add additional functions such as a filter routine
or a new data view to a virtual instrument.

Storage
Today's personal computers have hard disks that can store
dozens of gigabytes which is an absolute plus if you want to
process mass data like audio or video.

Display
Computer monitors usually have better color depth and pixel
resolution than traditional instruments. Also you can switch
easily between different views of the data (graphical,
numerical).

What is Virtual Instrumentation?

Virtual instrumentation combines mainstream commercial technologies.
such as C, with flexible software and a wide variety of measurement
and control hardware, so engineers and scientists can create user-
defined systems that meet their exact application needs. With virtual
instrumentation, engineers and scientists reduce development time,
design higher quality products, and lower their design costs.

Why is Virtual Instrumentation necessary?

Virtual instrumentation is necessary because it delivers
instrumentation with the rapid adaptability required for today’s
concept, product, and process design, development, and
delivery. Only with virtual instrumentation can engineers and
scientists create the user-defined instruments required to keep
up with the world’s demands.

The only way to meet these demands is to use test and control
architectures that are also software centric. Because virtual
instrumentation uses highly productive software, modular I/O,
and commercial platforms, it is uniquely positioned to keep
pace with the required new idea and product development rate

The technology of Virtual Instruments

Virtual Instrumentation is the use of customizable software and
modular measurement hardware to create user-defined measurement
systems, called virtual instruments.

Computer
Software

Hardware

What is a virtual instrument and how is it different
from a traditional instrument?

Every virtual instrument consists of two parts – software and
hardware. A virtual instrument typically has a sticker price
comparable to and many times less than a similar traditional
instrument for the current measurement task.

A traditional instrument provides them with all software and
measurement circuitry packaged into a product with a finite list of
fixed-functionality using the instrument front panel. A virtual
instrument provides all the software and hardware needed to
accomplish the measurement or control task. In addition, with a
virtual instrument, engineers and scientists can customize the
acquisition, analysis, storage, sharing, and presentation functionality
using productive, powerful software.

Traditional instruments (left) and software based virtual instruments (right) largely
share the same architectural components, but radically different philosophies

One Application -- Different Devices
For this particular example, an engineer is developing an
application using LabVIEW and an M Series DAQ board on a
desktop computer PCI bus in his lab to create a DC voltage and
temperature measurement application. After completing the
system, he needs to deploy the application to a PXI system on the
manufacturing floor to perform the test on new product.
Alternatively, he may need the application to be portable, and so
he selects NI USB DAQ products for the task. In this example,
regardless of the choice, he can use virtual instrumentation in a
single program in all three cases with no code change needed.

Virtual Instrumentation for Industrial I/O and
Control

• PCs and PLCs both play an important role in control and
industrial applications. PCs bring greater software flexibility
and capability, while PLCs deliver outstanding ruggedness and
reliability. But as control needs become more complex, there is
a recognized need to accelerate the capabilities while retaining
the ruggedness and reliabilities.

• Multi domain functionality (logic, motion, drives, and process)
– the concept supports multiple I/O types. Logic, motion, and
other function integration is a requirement for increasingly
complex control approaches.

• Software tools for designing applications across several
machines or process units – the software tools must scale to
distributed operation.

Virtual Instrumentation for Design

• The same design engineers that use a wide variety of software
design tools must use hardware to test prototypes. Commonly,
there is no good interface between the design phase and
testing/validation phase, which means that the design usually
must go through a completion phase and enter a
testing/validation phase. Issues discovered in the testing phase
require a design-phase reiteration.

On which hardware I/O and platforms does virtual
instrumentation software run?

• Standard hardware platforms that house the I/O are important to I/O
modularity. Laptop and desktop computers provide an excellent
platform where virtual instrumentation can make the most of existing
standards such as the USB, PCI, Ethernet, and PCMCIA buses.

• for example, USB 2.0 and PCI Express

Layers of Virtual Instrumentation

• Application Software: Most people think immediately of the
application software layer. This is the primary development
environment for building an application.

• Test and Data Management Software: Above the application
software layer the test executive and data management
software layer. This layer of software incorporates all of the
functionality developed by the application layer and provides
system-wide data management.

• Measurement and Control Services Software: The last layer is
often overlooked, yet critical to maintaining software
development productivity.

Advantages of Virtual Instruments versus
Traditional Instruments

Flexibility
You can easily add additional functions such as a filter routine
or a new data view to a virtual instrument.

Storage
Today's personal computers have hard disks that can store
dozens of gigabytes which is an absolute plus if you want to
process mass data like audio or video.

Display
Computer monitors usually have better color depth and pixel
resolution than traditional instruments. Also you can switch
easily between different views of the data (graphical,
numerical).

Costs
PC add-in boards for signal acquisition and software mostly
cost a fraction of the traditional hardware they emulate.

• Block diagram executes
dependent on the flow of data;
block diagram does NOT
execute left to right

• Node executes when data is
available to ALL input
terminals

• Nodes supply data to all output
terminals when done

Dataflow Programming

Help Options
Context Help

• Online help
• Lock help
• Simple/Complex Diagram help
• Ctrl + H

Online reference
• All menus online
• Pop up on functions in diagram to access online info

directly

Graphical programming in data
flow
LabVIEW

LabVIEW is a graphical programming language that uses icons
instead of lines of text to create applications. In contrast to text-
based programming languages, where instructions determine
program execution, LabVIEW uses dataflow programming, where
the flow of data determines execution order.
You can purchase several add-on software toolkits for developing
specialized applications. All the toolkits integrate seamlessly in
LabVIEW. Refer to the National Instruments Web site for more
information about these toolkits.
LabVIEW also includes several wizards to help you quickly
configure your DAQ devices and computer-based instruments and
build applications

LabVIEW programs are called virtual instruments (VIs).
Controls are inputs and indicators are outputs.
Each VI contains three main parts:
•Front Panel – How the user interacts with the VI.
•Block Diagram – The code that controls the program.
•Icon/Connector – Means of connecting a VI to other VIs.
In LabVIEW, you build a user interface by using a set of tools and
objects. The user interface is known as the front panel. You then
add code using graphical representations of functions to control
the front panel objects. The block diagram contains this code. In
some ways, the block diagram resembles a flowchart

Users interact with the Front Panel when the program is
running. Users can control the program, change inputs, and
see data updated in real time. Controls are used for inputs
such as, adjusting a slide control to set an alarm value,
turning a switch on or off, or to stop a program. Indicators
are used as outputs. Thermometers, lights, and other
indicators display output values from the program. These
may include data, program states, and other information.
Every front panel control or indicator has a corresponding
terminal on the block diagram. When a VI is run, values
from controls flow through the block diagram, where they
are used in the functions on the diagram, and the results are
passed into other functions or indicators through wires.

UNIT-II- VI PROGRAMMING
TECHNIQUES

Front Panel
Controls = Inputs
Indicators = Outputs

Block Diagram
Accompanying “program” for

front panel
Components “wired” together

LabVIEW Programs Are Called Virtual
Instruments (VIs)

Boolean
Control

Double
Indicator

Waveform Graph

Panel Toolbar
VI Front Panel

VI Block Diagram

Numeric Constant

Thermometer
TerminalCall to

subVI

While Loop

Knob
Terminal

Stop Button
Terminal

Stop Loop
Terminal

Temperature
Graph

Controls and Functions Palettes

Graphical, floating palettes

Used to place controls &
indicators on the front panel, or
to build the block diagram

Controls Palette
(Panel Window)

Functions Palette
(Diagram Window)

Operating Tool

Positioning/Resizing Tool

Labeling Tool

Wiring Tool

Shortcut Menu Tool

• Floating Palette
• Used to operate and modify front

panel and block diagram objects.

Scrolling Tool

Breakpoint Tool

Probe Tool

Color Copy Tool

Coloring Tool

Tools Palette

Automatic Selection Tool

Run Button

Continuous Run
Button

Abort Execution

Pause/Continue
Button

Text Settings

Align Objects

Distribute Objects
Reorder

Execution
Highlighting Button

Step Into Button

Step Over Button

Step Out Button

Additional Buttons on
the Diagram Toolbar

Status Toolbar

Signal Generation
and Processing.vi

Help » Find Examples…
Browse According to: Task

» Analyzing and Processing Signals
» Signal Processing

» Signal Generation and Processing.vi

Open and Run a Virtual Instrument

Control
Terminals

Block Diagram Window

Front Panel Window

Indicator
Terminals

Creating a VI

Creating a VI – Block Diagram
• After Creating Front Panel Controls and Indicators, Switch to

Block Diagram <Ctrl-E>
• Move Front Panel Objects to Desired Locations Using the

Position/Size/Select Tool
• Place Functions On Diagram
• Wire Appropriate Terminals Together to Complete the

Diagram

Wiring Tips – Block Diagram
Wiring “Hot Spot”

Click While Wiring To Tack Wires DownSpacebar Flips Wire Orientation

Click To Select Wires

SubVirtual Instruments

What is a subVI?
• Making an icon and

connector for a subVI
• Using a VI as a subVI

SubVIs

• A SubVI is a VI that can be used within
another VI

• Advantages
– Modular
– Easier to debug
– Don’t have to recreate code
– Require less memory

Icon and Connector

• An icon represents a VI in other block
diagrams

• A connector shows available terminals
for data transfer

Icon

Connector

Terminals

SubVIs

SubVIsSubVIs

Steps to Create a SubVI
• Create the Icon
• Create the Connector
• Assign Terminals
• Save the VI
• Insert the VI into a Top Level VI

Create the Icon
• Right-click on the icon in the

diagram or front panel

Create the Connector
Right click on the icon pane (front panel only)

Assign Terminals

Save The VI
• Choose an Easy to Remember Location
• Organize by Functionality

– Save Similar VIs into one directory (e.g. Math Utilities)
• Organize by Application

– Save all VIs Used for a Specific Application into one
directory or library file (e.g. Lab 1 – Frequency Response)

• Library Files (.llbs) combine many VI’s into a single
file, ideal for transferring entire applications across
computers

Insert the SubVI into a Top Level VI

Accessing user-made subVIs
Functions >> Select a VI

Or
Drag icon onto target diagram

Tips for Working in LabVIEW
• Keystroke Shortcuts

– <Ctrl-H> – Activate/Deactivate Context Help Window
– <Ctrl-B> – Remove Broken Wires From Block Diagram
– <Ctrl-E> – Toggle Between Front Panel and Block

Diagram
– <Ctrl-Z> – Undo (Also in Edit Menu)

• Tab Key – Toggle Through Tools on Toolbar
• Tools » Options… – Set Preferences in LabVIEW
• VI Properties – Configure VI Appearance,

Documentation, etc.

Loops and Charts
• For Loop
• While Loop
• Charts
• Multiplots

Loops
• While Loops

– Have Iteration Terminal
– Always Run Once
– Run According to

Continue Terminal

• For Loops
– Have Iteration Terminal
– Run According to input N

Loops (cont.)

For Loop

1. Select the loop
2. Enclose Code to

Repeat

Charts
Waveform chart – special numeric

indicator that can display a history of
values

Controls >> Graphs >> Waveform Chart

Wiring Data into Charts
Single Plot Charts Multiplot Charts

Monitoring Temperature
Students build Temperature

Monitor.vi.

Arrays & File I/O
• Build arrays manually
• Have LabVIEW build arrays automatically
• Write to a spreadsheet file
• Read from a spreadsheet file

Adding an Array to the Front Panel
From the Controls >> Array and Cluster subpalette, select the

Array Shell

Drop it on the screen.

Adding an Array (cont.)
• Place data object into shell (e.g. digital control).

Creating an Array with a Loop
• Loops accumulate arrays at their boundaries

Creating 2D Arrays

File I/O

•Read/write to
spreadsheet file

•Read/write characters to
file (ASCII)

•Read lines from file

•Read/write binary file

Easy File I/O Easy File I/O
VIsVIs

Array Functions & Graphs
• Basic Array Functions
• Use graphs
• Create multiplots with graphs

Array Functions – Basics

Array Functions – Build Array

Graphs
• Selected from the Graph palette of Controls menu

–Waveform Graph – Plot an
array of numbers against
their indices
–XY Graph – Plot one array
against another
–Digital Waveform Graph –
Plot bits from binary data

Strings
• A string is a sequence of displayable or nondisplayable

characters (ASCII)
• Many uses – displaying messages, instrument control, file I/O
• String control/indicator is in the Controls»String subpalette

Clusters
• Data structure that groups data together
• Data may be of different types
• Analogous to struct in C
• Elements must be either all controls or all indicators
• Thought of as wires bundled into a cable

Creating a Cluster
1. Select a Cluster shell

from the Array &
Cluster subpalette

2. Place objects inside the
shell

Cluster Functions
• In the Cluster subpalette of the Functions palette
• Can also be accessed by right-clicking on the cluster

terminal

Bundle

(Terminal labels
reflect data type)

Bundle By Name

Cluster Functions

Unbundle

Unbundle By Name

Unbundled cluster
in the diagram

Error Clusters
• Error cluster contains the following information:

– Boolean to report whether error occurred
– Integer to report a specific error code
– String to give information about the error

Error Handling Techniques
• Error information is passed from one subVI to the next
• If an error occurs in one subVI, all subsequent subVIs are not

executed in the usual manner
• Error Clusters contain all error conditions

error clusters

Case Structures
• In the Structures sub palette of Functions palette
• Enclose nodes or drag them inside the structure
• Stacked like a deck of cards, only one case visible

Error Clusters & Handling

Sequence Structures
• In the Structures subpalette of Functions palette
• Executes diagrams sequentially, Frame 0 (0..x), where x is the

total number of frames
• Stacked like a deck of cards, only one frame visible

Sequence Locals
• Pass data from one frame to future frames
• Created at the border of the Sequence structure

Sequence local
created in
Frame 1

Data not
available

Data
available

Formula Nodes
• In the Structures subpalette
• Implement complicated equations
• Variables created at border
• Variable names are case sensitive
• Each statement must terminate with a semicolon (;)
• Context Help Window shows available functions

Note semicolon

Printing & Documentation
• Print From File Menu to Printer, HTML, Rich Text File
• Programmatically Print Graphs or Front Panel Images
• Document VIs in VI Properties » Documentation Dialog
• Add Comments Using Free Labels on Front Panel & Block

Diagram

Printing
• File » Print… Gives Many Printing Options

– Choose to Print Icon, Front Panel, Block Diagram, VI
Hierarchy, Included SubVIs, VI History

• Print Panel.vi (Functions » Application Control)
Programmatically Prints a Front Panel

• Generate & Print Reports (Functions » Report Generation)
– Search in Find Examples for Report Generation

Documenting VIs
• VI Properties » Documentation

– Provide a Description and Help Information for a VI
• VI Properties » Revision History

– Track Changes Between Versions of a VI
• Individual Controls » Description and Tip…

– Right Click to Provide Description and Tip Strip
• Use Labeling Tool to Document Front Panels & Block Diagrams

Simple VI Architecture
• Functional VI that produces results when run

– No “start” or “stop” options
– Suitable for lab tests, calculations

• Example: Convert C to F.vi

General VI Architecture
• Three Main Steps

– Startup
– Main Application
– Shutdown

State Machine Architecture
• Advantages

– Can go from any state from any
other

– Easy to modify and debug
• Disadvantages

– Can lose events if two occur at the
same time

States:
0: Startup
1: Idle
2: Event 1
3: Event 2
4:Shutdown

Exercise 7 – Simple State Machine

UNIT-III DATA ACQUISITION

Introduction to DAQ

• Data Acquisition – “Sampling of the real world to generate
data that can be analyzed and presented by a computer.”

PC Based Data Acquisition System Overview:
In the last few years, industrial PC I/O interface products have
become increasingly reliable, ccurate and affordable. PC-based data
acquisition and control systems are widely used in industrial and
laboratory applications like monitoring, control, data acquisition and
automated testing.
Selecting and building a DA&C (Data Acquisition and Control)
system that actually does what you want it to do requires some
knowledge of electrical and computer engineering.
• Transducers and actuators
• Signal conditioning
• Data acquisition and control hardware
• Computer systems software

Data acquisition System Introduction I:
Data acquisition involves gathering signals from measurement
sources and digitizing the signals for storage, analysis, and
presentation on a PC. Data acquisition systems come in many
different PC technology forms to offer flexibility when choosing
your system. You can choose from PCI, PXI, PCI Express, PXI
Express, PCMCIA, USB, wireless, and Ethernet data acquisition for
test, measurement, and automation applications.

Data acquisition System Introduction II:
All industrial processing systems, factories, machinery, test facilities,
and vehicles consist of hardware components and computer software
whose behavior follow the laws of physics as we understand them.
These systems contain thousands of mechanical and electrical
phenomena that are continuously changing; they are not steady state.
The measurable quantities that represent the characteristics of all
systems are called variables. The proper functioning of a particular
system depends on certain events in time and the parameters of these
variables.
Often, we are interested in the location, magnitude, and speed of the
variables, and we use instruments to measure them.
We assign the variables units of measure such as volts, pounds, and
miles per hour, to name a few.

Transducers:
Data acquisition systems have multiple components that work together to
gather and process information. They can be used to analyze information
regarding physical phenomena, such as temperature, voltage, and pressure.
However, because temperature, voltage, and pressure are all distinct
different, they require different systems of measurement and
representation. In data acquisition systems, a transducer serves as the
component that translates raw data into a comprehensible electrical signal.
When a data acquisition system uses DAQ (data acquisition hardware) the
transducer also functions as a sensor, gathering the data from which it will
then generate a signal. As a result of all the different variables data
acquisition systems can measure, there are several kinds of transducers. A
transducer must be capable of generating different signals depending on the
particular phenomenon measured. Two general types of signals commonly
are used: analog and digital.

Transducer and Acutuator:
A transducer converts temperature, pressure, level, length, position,
etc. into voltage, current, frequency, pulses or other signals.
An actuator is a device that activates process control equipment by
using pneumatic, hydraulic or electrical power. For example, a valve
actuator opens and closes a valve to control fluid rate.

Signal conditioning :
Signal conditioning circuits improve the quality of signals generated
by transducers before they are converted into digital signals by the
PC's data-acquisition hardware.
Examples of signal conditioning are signal scaling, amplification,
linearization, cold-junction compensation, filtering, attenuation,
excitation, common-mode rejection, and so on.

One of the most common signal conditioning functions is
amplification. For maximum resolution the voltage range of the
input signals should be approximately equal to the maximum
input range of the A/D converter.
Amplification expands the range of the transducer signals so that
they match the input range of the A/D converter. For example, a x
10 amplifier maps transducer signals which range from 0 to 1 V
onto the range 0 to 10 V before they go into the A/D converter.

Signal Conditioning

Amplification
 Isolation
 Filtering
Linearization

Electrical signals are conditioned so they can be used by an analog
input board.
The following features may be available:

Data acquisition
Data acquisition and control hardware generally performs one or
more of the following functions:
•analog input,
•analog output,
•digital input,
•digital output and
•counter/timer functions.

Analog input
An analog input converts a voltage level into a digital value that can
be stored and processed in a computer. Why would you want to
measure voltages? There are a multitude of sensors available which
convert things like temperature, pressure, etc. into voltages. The
voltages can then be easily measured by various kinds of hardware,
such as a LabJack U3-HV, and then read into a computer. The
computer can then convert the voltage value into it's original type
(temperature, pressure, etc) and the value can then be stored in a file,
emailed to someone, or used to control something else outside of the
computer.

The most significant criteria when selecting A/D hardware are:
1. Number of input channels
2. Single-ended or differential input signals
3. Sampling rate (in samples per second)
4. Resolution (usually measured in bits of resolution)
5. Input range (specified in full-scale volts)
6. Noise and nonlinearity

Analog to Digital Converter
An Analog to Digital Converter (ADC) is a very useful
feature that converts an analog voltage on a pin to a
digital number. By converting from the analog world to
the digital world, we can begin to use electronics to
interface to the analog world around us.

Not every pin on a microcontroller has the ability to do analog to
digital conversions. On the Arduino board, these pins have an ‘A’
in front of their label (A0 through A5) to indicate these pins can
read analog voltages.

ADCs can vary greatly between microcontroller. The ADC on the
Arduino is a 10-bit ADC meaning it has the ability to detect 1,024
(210) discrete analog levels.
Some microcontrollers have 8-bit ADCs (28 = 256 discrete levels)
and some have 16-bit ADCs (216 = 65,535 discrete levels).

Analog
Input

4 Samples/cycle

8 Samples/cycle
16 Samples/cycle

Sampling rate
Sampling rate is the speed at which the
digitizer’s ADC converts the input signal,
after the signal has passed through the analog
input path, to digital values. Hence, the
digitizer samples the signal after any
attenuation, gain, and/or filtering has been
applied by the analog input path, and converts
the resulting waveform to digital
representation. The sampling rate of a high-
speed digitizer is based on the sample clock
that controls when the ADC converts the
instantaneous analog voltage to digital values

Effective rate of each individual channel is inversely proportional to the number
of channels sampled.
Example:

100 KHz maximum.
16 channels.
100 KHz/16 = 6.25 KHz per channel.

A/D converter Range
Dynamic range is often a key parameter within signal processing
systems and a shortfall can limit the quality and range of signals that
can be received. The technical progress made on improving this
gateway between the analogue and digital world has not kept pace
with Moore's law because the challenges are more fundamental than
simply reducing transistor sizes. Methods to increase a/d converter
dynamic range are therefore always of interest, although each
solution often suits particular applications.

Analog output (D/A)
An analog output is a measurable electrical signal with a defined
range that is generated by a controller and sent to a controlled
device, such as a variable speed drive or actuator.
Changes in the analog output cause changes in the controlled device
that result in changes in the controlled process.

Controller output digital to analog circuitry is typically limited to a
single range of voltage or current, such that output transducers are
required to provide an output signal that is compatible with
controlled devices using something other than the controller's
standard signal.

Common Types:There are four common types of analog outputs;
voltage, current, resistance and pneumatic.

Analog output (D/A)

• It can be the most critical factor in obtaining reliable, high
performance operation.

• Transforms the PC and DAQ hardware into a complete DAQ,
analysis, and display system.

• Different alternatives:
– Programmable software.
– Data acquisition software packages.

Data Aquisition software

Programmable software
• Involves the use of a programming language, such as:

– C++, visual C++
– BASIC, Visual Basic + Add-on tools (such as

VisuaLab with VTX)
– Fortran
– Pascal

 Advantage: flexibility
 Disadvantages: complexity and steep learning curve

Data acquisition software
• Does not require programming.
• Enables developers to design the custom instrument

best suited to their application.
Examples: TestPoint, SnapMaster, LabView,
DADISP, DASYLAB, etc.

Below is an image with LabView:

Small Computer System Interface [SCSI]
Small Computer System Interface (SCSI), an ANSI
standard, is a parallel interface standard used by Apple
Macintosh computers, PCs, and many UNIX systems for
attaching peripheral devices to computers. SCSI interfaces
provide for faster data transmission rates than standard
serial and parallel ports. In addition, you can attach many
devices to a single SCSI port. There are many variations
of SCSI: SCSI-1, SCSI-2, SCSI-3 and the recently
approved standard Serial Attached SCSI (SAS).
SCSI-1 : SCSI-1 is the original SCSI and it is obsolet so
far. Basically, SCSI-1 uses an 8-bit bus, and supports data
rates of 4 MBps.

SCSI-2
SCSI-2 is an improved version of SCSI-1. SCSI-2 is based on CCS
which is a minimum set of 18 basic commands all manufacture's
hardware would work together. SCSI-2 also provided extra speed
with options called Fast SCSI and a 16-bit version called Wide
SCSI. A feature called command queuing gave the SCSI device the
ability to execute command in an order that would be most
efficient. Fast SCSI delivers a 10 MB/sec transfer rate. When
combined with the 16-bit bus, this doubles to 20 MB/sec. This is
called Fast-Wide SCSI.

SCSI-3
SCSI-3 has many advances over SCSI-2 such as Serial SCSI.
This feature will allow data transfer up to 100MB/sec through a
six-conductor coaxial cable. SCSI-3 solves many of the
termination and delay problems of older SCSI versions. SCSI-3
eases SCSI installation woes by being more plug-and-play in
nature, such as automatic SCSI ID assigning and termination.
SCSI-3 also supports 32 devices while SCSI-2 supports only 8.

Data Acquisition System

Analog
Signal

Signal
Conditioner

ADC

Digital
Processing

Communication

Analog vs. Digital Signal

• Analog signals:
– Continuous, expressed in decimal system
– No limitation on the maximum/minimum value
– Can not be processed by computer

• Digital signals: binary number system
– All numbers are expressed by a combination of 1 & 0
– The maximum value is limited by # of bits available

Signal Conditioning

Functions: modify the analog signal to match the performance of
the ADC

– Pre-filtering: remove undesirable high frequency
components

– Amplification: amplify the signal to match the dynamic
range of the ADC

Analog-to-Digital Conversion (ADC)

Function: convert analog signals into digital signals
– Sample & hold
– Quantization
– Coding

y(t)=f(t) yk=f(tk)

Quantization

Definition: transformation of a continuous analog input into a
set of discrete output state

– Coding: the assignment of a digital code word or
number to each output states

– # of possible state: N=2n, n is # of bits
– Quantization resolution: Q=(Vmax-Vmin)/N
– Quantization Error:  

N
kk ftf)(

Select a Data Acquisition Card

• Functions: A/D, D/A, Digital I/O, signal conditioning
(amplification, prefiltering), timer, trigger, buffer

• Features:
– A/D resolution (# of bits used)
– Maximum sampling rate
– # of channels
– Total throughput
– Aperture time

Example of Data Acquisition Card

What is PXI?
• PXI = PCI eXtensions for Instrumentation
• Open specification governed by the PXI Systems Alliance

(PXISA) and introduced in 1997
• PC-based platform optimized for test, measurement, and

control
• PCI electrical-bus with the rugged, modular, Eurocard

mechanical packaging of CompactPCI
• Advanced timing and synchronization features

PXI Systems Alliance (PXISA)
• Founded in 1998
• PXISA Goals:

– Maintain the PXI specification
– Ensure interoperability
– Promote the PXI standard

• Currently 68+ Members Comprise PXISA
• PXISA Website (www.pxisa.org)

– Specifications
– Tutorials, Application Notes, and White Papers
– Locate member companies and products

http://www.pxisa.org)

PXI Specification
Mechanical
• High-performance connectors
• Eurocard mechanical packaging
• Forced-air cooling by chassis
• Environmental testing
• Electromagnetic testing
Electrical
• Industry-standard PC buses
• System reference clocks
• Star trigger buses
• PXI trigger bus
Software
• Microsoft Windows software frameworks
• Software components that define HW configuration and

capabilities
• Virtual Instrument Software Architecture (VISA)

implementation

PXI Backplane
•PCI/PCI Express bus
•Synchronization

Peripheral Slots

Chassis

PXI Controller
• Embedded PC,
remote PC or
remote laptop
interface
• Runs all
standard software

PXI System Overview

Embedded PXI System Controllers

Windows-Based Embedded Controllers
• High-performance
• Integrated peripherals
• Entire system in one chassis

Real-Time Embedded Controllers
• Determinism and reliability with LabVIEW
Real-Time
• Select high-performance or low-cost/low-
power
• Headless operation

Remote PXI System Controllers
PC Control of PXI
• Use latest high-performance PCs

• PCI Express with MXI-Express
• PCI with MXI-4

• High-speed, software transparent links
• Up to 110 MB/s sustained throughput

• Build multi-chassis PXI systems
• Copper and fiber-optic cabling options
Laptop Control of PXI
• Use latest high-performance laptop computers

• ExpressCard with ExpressCard MXI
• PCMCIA CardBus

• High-speed, software transparent links
• Up to 110 MB/s sustained throughput

• PXI controllers for portable applications
• Use with DC-powered chassis for mobile systems

PXI Chassis
Chassis Offering
• 4, 6, 8, 14, and 18-slot
• Portable, benchtop, and rack-mount
• AC and DC options
• PXI/SCXI combination chassis
with integrated signal conditioning

Data Acquisition and
Control
Multifunction I/O
Analog Input/Output
Digital I/O
Counter/Timer
FPGA/Reconfigurable I/O
Machine Vision
Motion Control
Signal Conditioning
Temperature
Strain/Pressure/Force/Loa
d
Synchro/Resolver
LVDT/RVDT
Many More. . .

Modular Instrumentation
Digital Waveform
Generator
Digital Waveform Analyzer
Digital Multimeter
LCR Meter
Oscilloscope/Digitizer
Source/Signal Generator
Switching
RF Signal Generator
RF Signal Analyzer
RF Power Meter
Frequency Counter
Programmable Power
Supply
Many More. . .

Bus Interfaces
Ethernet, USB,
FireWire
SATA, ATA/IDE, SCSI
GPIB
CAN, DeviceNet
Serial RS-232, RS-485
VXI/VME
Boundary Scan/JTAG
MIL-STD-1553, ARINC
PCMCIA/CardBus
PMC
Profibus
LIN
Many More. . .

Others
IRIG-B, GPS
Direct-to-Disk
Reflective Memory
DSP
Optical
Resistance Simulator
Fault Insertion
Prototyping/Breadboard
Graphics
Audio
Many More. . .

Wide Range of PXI Modules

What’s New in PXI?
PXI Express
• Increases throughput with 2.0 GB/s per slot dedicated bandwidth
• Industry’s best synchronization and latency specification
• Ensures compatibility with your existing software and all 1000+

PXI modules

Increased BW Enables New
Applications

• PXI applications requiring PCI bandwidth
– General purpose automated test (DMMs, switching,

baseband instruments, etc)
– General purpose data acquisition (AI, AO, DIO, etc)
– Bus interfaces (CAN, 1553, ARINC, etc)
– Motion control

• PXI applications requiring PCI Express
bandwidth
– High frequency, resolution IF / RF systems
– High speed digital interfaces
– High channel count data acquisition
– High speed imaging

PXI Trigger Bus (8 TTL Triggers)

PX
I E

xp
re

ss
Sy

st
em

C
on

tr
ol

le
r

Star
Trigger

100 MHz
Differential CLK

Differential Star
Triggers

PXI

PXI Express

SYNC
Control

SYNC100

10 MHz
CLK

PX
I E

xp
re

ss
Sy

st
em

Ti
m

in
g

Sl
ot

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I

Pe
rip

he
ra

l

PXI Trigger Bus (8 TTL Triggers)

PX
I E

xp
re

ss
Sy

st
em

C
on

tr
ol

le
r

Star
Trigger

100 MHz
Differential CLK

Differential Star
Triggers

PXI

PXI Express

SYNC
Control

SYNC100

10 MHz
CLK

PX
I E

xp
re

ss
Sy

st
em

Ti
m

in
g

Sl
ot

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I E

xp
re

ss
H

yb
rid

Pe

rip
he

ra
l

PX
I

Pe
rip

he
ra

l

Benefits of PXI Express Timing and Synch. Features
• Higher performance

– 100 MHz differential system reference clock
• LVPECL lower jitter clock distribution

– Clock 10 < 1 ns skew
– Clock 100 < 200 ps skew

• Tighter synchronization specifications
– Multichassis synchronization with PXIe_SYNC100
– Differential star triggers

• Available to all slots
• LVPECL low jitter clock, LVDS clocks/triggers for

compatibility

PXI and Hybrid Slots Ensure Compatibility

Ethernet-based Industrial Protocols
• Modbus TCP/IP
• Ethernet/IP
• EtherCAT
• Profinet

EtherNet/IP Overview
• Dominant bus for Rockwell Automation

– Managed by Open Device Vendors Association
(ODVA)

– Extends DeviceNET concepts to Ethernet
• Advantages

– Uses Ethernet transport layer (TCP and UDP)
• Disadvantages

– Can overload networks with UDP messages if not
correctly configured, recommend managed switches
with IGMP snooping

Communication from NI PAC to
ControlLogix and ComapctLogix PLCs

Ethernet/IP

Uses explicit messaging
Available for download from NI Labs

EtherNet/IP VIs for LabVIEW
• Provides VIs for communication to “Logix” PLC Tags

– Directly read and write tags on Allen Bradley ControlLogix
and CompactLogix PLCs

• Runs on LabVIEW for Windows and LabVIEW Real-Time
(Pharlap and VxWorks)

• Explicit Messaging
• Good for low numbers of tags

Why Ethernet: Protocols
Modbus TCP/IP

Traditional Industrial Protocols

PROFInetPROFIBUS

DeviceNet EtherNet/IP

Modbus

Ethernet Physical Layer

CanOPEN EtherCAT

Motivations for IVI.NET
• Present an API more suited to .NET developers
• Simplify source code

– Allow end users to understand instrument behavior by
examining driver source

– Allow end users to fix bugs on their own
– Allow end users to add features to drivers on their own

• Richer, more expressive APIs
– More flexibility with API data types
– Clean handling of asynchronous notifications (aka

“events”)
• Side-by-side deployment of drivers

– Only one version of an IVI-COM or IVI-C driver can be
installed at a time

– IVI.NET allows multiple versions of a driver to be installed

IVI-COM and IVI-C Driver Source
• IVI-COM and IVI-C drivers are both quite complicated

internally
• Supporting IVI driver features requires a lot of code

– Multi-thread safety
– Simulation
– Range-checking
– State-caching

• “Basic” COM plumbing is complex and not well understood
by many

• Multi-model driver support can be complicated
• Driver development tools are required, but can only do so

much
– Nimbus Driver Studio and LabWindows both work hard to

factor as much code “out of the way”

Advanced Tooling for IVI.NET
• Many IVI-COM and IVI-C complaints tied to complex source

code
• Tools have even more difficulty dealing with C/C++ source

than humans
– Includes files and macros are particularly problematic
– Few really good C++ refactoring exist in any domain

• A prime motivator for .NET itself is the improved ability to
create tooling

• Simpler source possible because .NET code can more easily be
roundtripped

• Static analysis tools highlight issues at compile time that
previously could only be detected at runtime

• Browsers can easily interrogate an IVI.NET driver and
understand its features

• Declarative attributes can be used where procedural code was
previously required
– Achieved via “extending” the compiler (aka “code-

weaving”)

Shared IVI.NET Data Types
• IVI Foundation felt it would be useful to offer commonly used data types

as part of the IVI.NET Shared Components
– Increase consistency amongst IVI.NET drivers
– Facilitate data interchange between drivers

• Standardized IWaveform and ISpectrum interfaces
– Digitizers and scopes and RF spectrum analyzers all read waveforms
– Function generators and RF signal generators source waveforms
– Without a common definition of a “waveform”, client applications

would need to write the tedious code to translate between each class’s
notion of a waveform

• Time-based parameters can use PrecisionDateTime and PrecisionTimeSpan
– No confusion about ms vs sec, absolute vs relative time, UTC time, etc
– Precision adequate for IEEE 1588 devices

• Common trigger source data type
– Useful in “stitching” together devices in triggered source-measure

operations

Error Handling in IVI.NET
• IVI-C drivers rely solely on return codes

– Errors can easily be ignored by the client application
– After getting the error code, a second function call is

required to get the message
– Special handling of warning codes required

• IVI-COM error code handling depends upon the client
environment
– Return codes in raw C++
– Special exception classes in C++
– COMException class in .NET interop scenarios
– .NET clients can’t see warnings at all from IVI-COM

drivers
• IVI.NET drivers always use exceptions

– User can always see the full context of the error
– Error content less dependent upon specific driver

implementation
– Natural mechanism

Performance of IVI.NET
• Fewer memory leaks
• Reference counting has a cost

– Reference count field per-object
– Increment and decrement called much more frequently than

one might think
– Reference count field must be thread-safe

• Even more per-object overhead
• Frequently lock/unlock operations

• Conventional memory-managed systems (such as C-runtime
library) produce highly fragmented memory
– Allocation of objects can be expensive
– Objects spread out in memory => poor locality of reference

• .NET memory allocation produces very good locality of
reference
– Object allocation extremely fast
– Objects allocated close together in time live close together

in memory
– Fewer cache misses and better virtual paging performance

Dynamic Memory Allocation in
.NET

var c1 = new Car();
var c2 = new Car();
var c3 = new Car();

C1 C2 C3 Free Space

Managed Heap

Start of free space

UNIT-IV VI TOOLSETS

Definition
• All Periodic Waves Can be Generated by Combining Sin and

Cos Waves of Different Frequencies
• Number of Frequencies may not be finite
• Fourier Transform Decomposes a Periodic Wave into its

Component Frequencies

DFT Definition
• Sample consists of n points, wave amplitude at fixed intervals

of time:
(p0,p1,p2, ..., pn-1) (n is a power of 2)

• Result is a set of complex numbers giving frequency
amplitudes for sin and cos components

• Points are computed by polynomial:
P(x)=p0+p1x+p2x2+ ... +pn-1xn-1

DFT Definition, continued
• The complete DFT is given by

P(1), P(w), P(w2), ... ,P(wn-1)

• w Must be a Primitive nth Root of Unity

• wn=1, if 0<i<n then wi ¹ 1

Primitive Roots of Unity
• wi is an nth root of unity (not primitive)
• wn/2 = -1
• if 0£j£n/2-1 then w(n/2)+j = -wj

• if n is even and w is a primitive nth root of unity, then w2

is a primitive n/2 root of unity
• Example: w = cos(2p/n) + isin(2p/n)

 i

i

n





 
0

1

0

Divide and Conquer

• Compute an n-point DFT using one or more
n/2-point DFTs

• Need to find Terms involving w2 in following
polynomial

• P(w)=p0+p1w+p2w2+p3w3+p4w4+ ... +pn-1wn-1

Here They AreHere They Are

Windowing and Filtering
• Simplest way of designing FIR filters
• Method is all discrete-time no continuous-time involved
• Start with ideal frequency response

• Choose ideal frequency response as desired response
• Most ideal impulse responses are of infinite length
• The easiest way to obtain a causal FIR filter from ideal is

• More generally

   




ww 
n

nj
d

j
d enheH     w


 





ww deeH
2
1nh njj

dd

   


 


else0

Mn0nh
nh d

       


 


else0

Mn01
nw where nwnhnh d

Windowing in Frequency Domain
• Windowed frequency response

• The windowed version is smeared version of desired response

• If w[n]=1 for all n, then W(ejw) is pulse train with 2 period

       


 ww




w  deWeH
2
1eH jj

d
j

Properties of Windows
• Prefer windows that concentrate around DC in frequency

– Less smearing, closer approximation
• Prefer window that has minimal span in time

– Less coefficient in designed filter, computationally efficient
• So we want concentration in time and in frequency

– Contradictory requirements
• Example: Rectangular window

• Demo

 
    

 2/sin
2/1Msine

e1
e1eeW 2/Mj

j

1MjM

0n

njj

w
w





 w

w

w



ww 

Rectangular Window

 


 


else0

Mn01
nw

• Narrowest main lob
– 4/(M+1)
– Sharpest transitions at

discontinuities in
frequency

• Large side lobs
– -13 dB
– Large oscillation

around
discontinuities

• Simplest window
possible

•

Bartlett (Triangular) Window

 












else0
Mn2/MM/n22
2/Mn0M/n2

nw

• Medium main lob
– 8/M

• Side lobs
– -25 dB

• Hamming window
performs better

• Simple equation

Hamming Window

 




















 


else0

Mn0
M
n2cos1

2
1

nw

• Medium main lob
– 8/M

• Side lobs
– -31 dB

• Hamming window
performs better

• Same complexity as
Hamming

Blackman Window

 












 







 


else0

Mn0
M

n4cos08.0
M
n2cos5.042.0nw

• Large main lob
– 12/M

• Very good side lobs
– -57 dB

• Complex equation

Incorporation of Generalized
Linear Phase

• Windows are designed with linear phase in mind
– Symmetric around M/2

• So their Fourier transform are of the form

• Will keep symmetry properties of the desired impulse response
• Assume symmetric desired response

• With symmetric window

   


 


else0

Mn0nMw
nw

      even and real a is eW where eeWeW j
e

2/Mjj
e

j wwww 

    2/Mjj
e

j
d eeHeH www 

       


 




ww deWeH
2
1eA jj

e
j

e

Linear-Phase Low pass filter
• Desired frequency response

• Corresponding impulse
response

• Desired response is even
symmetric, use symmetric
window

 






ww
ww


w

w

c

c
2/Mj

j
lp 0

e
eH

    
 2/Mn

2/Mnsinnh c
lp 

w


    
   nw

2/Mn
2/Mnsinnh c


w



152

Kaiser Window Filter Design
Method

• Parameterized equation
forming a set of windows
– Parameter to change

main-lob width and side-
lob area trade-off

– I0(.) represents zeroth-
order modified Bessel
function of 1st kind

 
 



































 




else0

Mn0
I

2/M
2/Mn1I

nw
0

2

0

Determining Kaiser Window
Parameters

• Given filter specifications Kaiser developed empirical
equations
– Given the peak approximation error  or in dB as A=-

20log10 
– and transition band width

• The shape parameter  should be

• The filter order M is determined approximately by

 
   















21A0
50A2121A07886.021A5842.0

50A7.8A1102.0
4.0

ps www

w



285.2

8AM

General Frequency Selective Filters
• A general multiband impulse response can be written as

• Window methods can be applied to multiband filters
• Example multiband frequency response

– Special cases of
• Bandpass
• Highpass
• Bandstop

     
 


 

w


mbN

1k

k
1kkmb 2/Mn

2/MnsinGGnh

UNIT-V APPLICATIONS

Digital
• Storing information often in a series of 1’s and 0’s or binary numbers.

The process can be used to do calculations or sending pulses to
regulate instrumentation or other electronic equipment turning it
on/off or regulating the use of materials such as the flow of liquid
through a valve. In instrumentation and process control this
accomplished by concerting an analogue signal into a digital signal to
control the process. A non-electronic example would be smoke signals
or a beacon.

Analogue
• An analog or analogue signal is any continuously variable signal. It

differs from a digital signal in that small fluctuations in the signal are
meaningful within a given scale range from a small to large signal.
Analog is usually thought of in an electrical context, however
mechanical, pneumatic, hydraulic, and other systems may also use
analog signals.

• A great example of an analogue device is a Wrist Watch with hands
that move.

Binary
• Having the base of 2 for number system with two digits 0 and 1. Basis

of electronic signal signals used in computers. Creates two states for
the binary signal on or off, 0 being off and 1 being on. There is no
state in between the device is either on or off. Often referred to as
Boolean Logic

Microprocessor
• A silicon based processing chip or logic chip designed as the heart of

the computer, contains all the necessary information to run a computer
speed measured in megahertz (MHz) or gigahertz (GHz). These chips
have areas for comparing numbers or doing calculations called
registers.

• Good example: Digital Clocks and Wrist Watches

Fuzzy Logic
• The ability of a machine to answer questions that are not yes or no

questions. Fuzzy logic use 0 and 1 as the extremes of yes and no but
answers the degrees of maybe. Fuzzy logic works much closers to that
of the human brain. It is subset of Boolean logic use to fill the
concepts of a partial truth. An example of such is a half full glass of
water is .50 of full.

Neural System
• In information technology, a neural network is a system of programs

and data structures that approximates the operation of the human
brain. A neural network usually involves a large number of processors
operating in parallel, each with its own small sphere of knowledge and
access to data in its local memory.

• Good example: Joystick for a computer game

Sensors
• Devices such as a photocell that respond to a signal or stimulus. A

device that measures or detects a real-world condition, such as
motion, heat or light and converts the condition into an analog or
digital representation. These devices are use in manufacturing plants
to tell how many items are in a package such as the example CD’s to
fill a container for packaging or to the number of containers fill case
for shipment.

• Good examples: motion detectors and burglar alarms

Actuators
• One that activates, especially a device responsible for actuating a

mechanical device, such as one connected to a computer by a sensor
link.

• An actuator is the mechanism by which an agent acts upon an
environment. The agent can be either an artificial or any other
autonomous being (human, other animal, etc).

• Examples: human hand, leg, arm, Part Picking Robot, Switches

Stepper Motors
• A mechanism that causes a device to be turned on or off, adjusted or

moved. The motor and mechanism that moves the head assembly on a
disk drive or an arm of a robot is called an actuator.

A good example printer motor moves the laser head cartridge across the
paper.

Synchro Motor

• A type of rotary transformer fixed to rotor which attached to a motor
and can be adjusted. The current is adjusted to keep the rotor and
motor operating at a synchronized speed. The result of this action
causes the parts to work in unison.

• Good Examples: the gun turret on a naval destroyer and the film and
sound of older movies before microelectronics.

Open-loop Control
• A control loop operated by human intervention or does not have a

feedback loop to self adjust.
Example A fan that plugs into the wall with no switch to turn on or off.

Plug fan into
outlet power
on

Fan
operates at
the speed
of the
motor

Unplug fan
to shut off

Fan operates to
fast to much air
movement blows
papers of desk

Closed-loop Control

• A control-loop operated by a feedback loop allowing self adjusting of
the loop.” A mechanical, optical, or electronic system that is used to
maintain a desired output.”

• Good example: Fan with a switch to allow the speed to be changed

Fan
plugged
in

Fan
turned
on

Fan is
to fast
papers
blow
around

Switch
turned
down to
lower fan
speed

Fan works
fine papers
do not blow
around

Fan
speed
can be
adjusted
or turned
off

Instrumentation
• Instrumentation is defined as "the art and science of measurement and

control". Instrumentation is used to refer to the field in which
Instrument technicians and engineers work. Instrumentation also can
refer to the available methods of measurement and control

• Good example: the gauges that control the boilers for the school
heating system

Development of process database
management system

1. Basic Definitions
Database: A collection of related data.

Data: Known facts that can be recorded and have an
implicit meaning.

Mini-world: Some part of the real world about which
data is stored in a database. For example, consider
student names, student grades and transcripts at a
university.

Database Management System (DBMS): A software package/
system to facilitate the creation and maintenance of a
computerized database.

It
• defines (data types, structures, constraints)
• construct (storing data on some storage medium
controlled by DBMS)
• manipulate (querying, update, report generation) databases

for various applications.

Database System: The DBMS software together with the data
itself. Sometimes, the applications are also included.

2.File Processing and DBMS
File Systems :

– Store data over long periods of time
– Store large amount of data

However :
– No guarantee that data is not lost if not backed up
– No support to query languages
– No efficient access to data items unless the location is

known
– Application depends on the data definitions (structures)
– Change to data definition will affect the application

programs
– Single view of the data
– Separate files for each application
– Limited control to multiple accesses
- Data viewed as physically stored

3. Main Characteristics of Database
Technology

- Self-contained nature of a database system: A DBMS catalog
stores the description (structure, type, storage format of each
entities) of the database. The description is called meta-data).
This allows the DBMS software to work with different databases.

- Insulation between programs and data: Called program-data
independence. Allows changing data storage structures and
operations without having to change the DBMS access programs.

- Data Abstraction: A data model is used to hide storage details
and present the users with a conceptual view of the database;
does not include how data is stored and how the operations are
implemented.

-

• Support of multiple views of the data: Each user may see a
different view of the database, which describes only the
data of interest to that user.

• Sharing of Data and Multiple users

DBA – Database Administrator
- Responsible for authorizing access to the database,

coordinating, monitoring its use, acquiring hardware,
software needed.

Database designers
- Responsible for identifying the data to be stored, storage

structure to represent and store data. This is done by a team
of professionals in consultation with users, and
applications needed.

4. Additional Benefits of Database
Technology

- Controlling redundancy in data storage and in development and
maintenance efforts.

- Sharing of data among multiple users.
- Restricting unauthorized access to data.
- Providing multiple interfaces to different classes of users.
- Representing complex relationships among data.
- Enforcing integrity constraints on the database.
- Providing backup and recovery services.
- Potential for enforcing standards.
- Flexibility to change data structures.
- Reduced application development time.
- Availability of up-to-date information.
• Economies of scale.

5 When not to use a DBMS
Main inhibitors (costs) of using a DBMS:

- High initial investment and possible need for additional hardware.
- Overhead for providing generality, security, recovery, integrity,

and concurrency control.
When a DBMS may be unnecessary:

- If the database and applications are simple, well defined, and not
expected to change.

- If there are stringent real-time requirements that may not be met
because of DBMS overhead.

- If access to data by multiple users is not required.
When no DBMS may suffice:

- If the database system is not able to handle the complexity of data
because of modeling limitations

- If the database users need special operations not supported by the
DBMS.

6. Data Models
Data Model: A set of concepts to describe the structure (data

types, relationships) of a database, and certain constraints that
the database should obey.

Data Model Operations: Operations for specifying database
retrievals and updates by referring to the concepts of the data
model.

DBMS Languages
Data Definition Language (DDL): Used by the DBA and

database designers to specify the conceptual schema of a
database.

In many DBMSs, the DDL is also used to define internal and
external schemas (views). In some DBMSs, separate storage
definition language (SDL) and view definition language
(VDL) are used to define internal and external schemas.

Data Manipulation Language (DML): Used to specify database
retrievals and updates.

-DML commands (data sublanguage) can be embedded in a
general-purpose programming language (host language), such
as COBOL, PL/1 or PASCAL.
- Alternatively, stand-alone DML commands can be applied
directly (query language).

High Level or non-Procedural DML – Describes what data to
be retrieved rather than how to retrieve.
- Process many records at a time
- SQL

Low Level or Procedural DML – It needs constructs for
both, what to retrieve and what to
retrieve
- Uses looping etc. like programming languages
Only access one record at a time

DBMS Interfaces
- Stand-alone query language interfaces.
- Programmer interfaces for embedding DML in programming
languages:
- Pre-compiler Approach
- Procedure (Subroutine) Call Approach
- User-friendly interfaces:
- Menu-based
- Graphics-based (Point and Click, Drag and Drop etc.)
- Forms-based
- Natural language
- Combinations of the above
- Speech as Input (?) and Output
- Web Browser as an interface

-

Classification of DBMSs
Based on the data model used:
- Traditional: Relational, Network, Hierarchical.
- Emerging: Object-oriented, Object-relational.

Other classifications:
- Single-user (typically used with micro- computers) vs.
multi-user (most DBMSs).
- Centralized (uses a single computer with one database)
vs. distributed (uses multiple computers, multiple databases)

Distributed Database Systems have now come to be known as
client server based database systems because they do not
support a totally distributed environment, but rather a set
of database servers supporting a set of clients.

Simulation of systems using VI

• SPICE
– Simulation Program with Integrated Circuit Emphasis
– Developed at University of California at Berkeley
– Three revisions, SPICE-3F5 is current

• Other circuit simulation technologies
– XSPICE – behavioral SPICE – combines SPICE with

component behavior in C
– VHDL – Programmable Logic Design
– IBIS – Used to model transfer function of sophisticated

components (A/Ds, etc…)
– PSpice®, HSPICETM – commercial variations of the

Berkeley SPICE.
– RF with Electromagnetic Field Solvers (Agilent

Advanced Design SystemTM or Ansoft Designer ®)

SPICE
Introduction

SPICE Primer
• SPICE Circuit

– Built by creating a netlist of native SPICE
primitive models.

– Netlist is a text file that lists all connections and
model information.

– Schematic File
• Vendor specific
• May include package, footprint, and

additional information
– SPICE adds analysis commands on top of

SPICE file allowing a SPICE simulation to
extract information out of circuit (Transient,
AC, Monte Carlo etc…)

• Variety of native SPICE components:
– Resistors, Capacitors, Inductors, Sources,

Transistors, etc…

Advantages to Using
SPICE with Virtual Instrumentation

Mathematical capabilities of SPICE to accurately model
complex circuits and devices

- AND –
Measurement capabilities of Virtual Instrumentation
(such as data collection, automation, testing, etc)

SPICE

Schematic, Simulation, Analysis

Virtual Prototype

Testing

Measurements

Physical Measurements

Comparison between simulation data
and measurements is simplified

VI Software

Virtual Measurements

Simulation and Measurements for Design
Engineers

Logic Analyzer
Function Generator

Scope

Power Supply

DMM

•How do you effectively compare test
bench data with simulation data?

•How can you bring in measurement data
into simulation?

•Is there anyway to perform simulations,
compare results and optimize the design
automatically?

Multisim and LabVIEW Integration

1 .Build Circuit and
Simulate in Multisim

2. Use LabVIEW to
generate realistic test

and/or stimulus waveforms

3. Create Measurements in
LabVIEW Reflective of real tests

done during testing

4. Once Hardware Prototype is
completed, use same measurements

for validation testing.

5. Key Step: Compare Measurements
and Simulation Data for Improving

Design Functionality and Performance

In this chapter we describe a general process for designing a control
system.

A control system consisting of interconnected components is designed
to achieve a desired purpose. To understand the purpose of a control
system, it is useful to examine examples of control systems through
the course of history. These early systems incorporated many of the
same ideas of feedback that are in use today.

Modern control engineering practice includes the use of control
design strategies for improving manufacturing processes, the
efficiency of energy use, advanced automobile control, including
rapid transit, among others.

We also discuss the notion of a design gap. The gap exists between
the complex physical system under investigation and the model used
in the control system synthesis.

Development of Control system

System – An interconnection of elements and devices for a desired
purpose.
Control System – An interconnection of components forming a
system configuration that will provide a desired response.

Process – The device, plant, or
system under control. The input
and output relationship
represents the cause-and-effect
relationship of the process.

Control System

• Control is the process of causing a system variable to conform
to some desired value.

• Manual control Automatic control (involving machines
only).

• A control system is an interconnection of components forming
a system configuration that will provide a desired system
response.

Control
System

Output
Signal

Input
Signal

Energy
Source

Multivariable Control System

Open-Loop Control
Systems utilize a
controller or control
actuator to obtain the
desired response.
Closed-Loop Control
Systems utilizes
feedback to compare
the actual output to the
desired output response.

Control System Classification

Open-Loop Control System

Missile Launcher System

Control System Classification

Closed-Loop Feedback Control System

Missile Launcher System

Control System Classification

Desired
Output

Response

Measurement

Output
Variables

Controller Process

Multi Input Multi Output (MIMO) System

Purpose of Control Systems

i. Power Amplification (Gain)
– Positioning of a large radar antenna by low-power rotation

of a knob
ii. Remote Control

– Robotic arm used to pick up radioactive materials
iii. Convenience of Input Form

– Changing room temperature by thermostat position
iv. Compensation for Disturbances

– Controlling antenna position in the presence of large wind
disturbance torque

Historical Developments

i. Ancient Greece (1 to 300 BC)
– Water float regulation, water clock, automatic oil lamp

ii. Cornellis Drebbel (17th century)
– Temperature control

iii. James Watt (18th century)
– Flyball governor

iv. Late 19th to mid 20th century
– Modern control theory

Control System Components

i. System, plant or process
– To be controlled

ii. Actuators
– Converts the control signal to a power signal

iii. Sensors
– Provides measurement of the system output

iv. Reference input
– Represents the desired output

General Control System

Sensor

Actuator ProcessController ++

Set-point
or

Reference
input

Actual
Output

Error
Controlled

Signal

Disturbance

Manipulated
Variable

Feedback Signal

+

-

+
+

Image acquisition and processing-
Image Processing Fields

• Computer Graphics: The creation of images

• Image Processing: Enhancement or other manipulation of the
image

• Computer Vision: Analysis of the image content

Image Processing Fields
Input / Output Image Description

Image Image Processing Computer Vision

Description Computer Graphics AI

Sometimes, Image Processing is defined as “a
discipline in which both the input and output
of a process are images

But, according to this classification, trivial
tasks of computing the average intensity of an
image would not be considered an image
processing operation

Computerized Processes Types
• Mid-Level Processes:

– Inputs, generally, are images. Outputs are attributes
extracted from those images (edges, contours, identity of
individual objects)

– Tasks:
• Segmentation (partitioning an image into regions or

objects)
• Description of those objects to reduce them to a form

suitable for computer processing
• Classifications (recognition) of objects

Digital Image Definition
• An image can be defined as a two-dimensional function f(x,y)
• x,y: Spatial coordinate
• F: the amplitude of any pair of coordinate x,y, which is called

the intensity or gray level of the image at that point.

• X,y and f, are all finite and discrete quantities.

Fundamental Steps in Digital Image Processing:

Image
Acquisition

Image
Restoration

Morphological
Processing

Segmentation

Object
Recognition

Image
Enhancement Representation

& Description

Problem Domain

Colour Image
Processing

Image
Compression

Wavelets &
Multiresolution

processing

Knowledge Base

Outputs of these processes generally are images

O
ut

pu
ts

 o
f t

he
se

 p
ro

ce
ss

es
 g

en
er

al
ly

 a
re

 im
ag

e
at

tr
ib

ut
es

Fundamental Steps in DIP:
(Description)

Step 1: Image Acquisition
The image is captured by a sensor (eg. Camera), and digitized
if the output of the camera or sensor is not already in digital
form, using analogue-to-digital convertor

Fundamental Steps in DIP:
(Description)

Step 2: Image Enhancement
The process of manipulating an image so that the result is
more suitable than the original for specific applications.

The idea behind enhancement techniques is to bring out details
that are hidden, or simple to highlight certain features of
interest in an image.

Fundamental Steps in DIP:
(Description)

Step 3: Image Restoration
- Improving the appearance of an image

- Tend to be mathematical or probabilistic models.
Enhancement, on the other hand, is based on human subjective
preferences regarding what constitutes a “good” enhancement
result.

Fundamental Steps in DIP:
(Description)

Step 4: Colour Image Processing
Use the colour of the image to extract features of interest in an
image

Fundamental Steps in DIP:
(Description)

Step 5: Wavelets
Are the foundation of representing images in various degrees
of resolution. It is used for image data compression.

Fundamental Steps in DIP:
(Description)

Step 6: Compression
Techniques for reducing the storage required to save an image
or the bandwidth required to transmit it.

Fundamental Steps in DIP:
(Description)

Step 7: Morphological Processing
Tools for extracting image components that are useful in the
representation and description of shape.

In this step, there would be a transition from processes that
output images, to processes that output image attributes.

Fundamental Steps in DIP:
(Description)

Step 8: Image Segmentation
Segmentation procedures partition an image into its constituent
parts or objects.

Important Tip: The more accurate the segmentation, the
more likely recognition is to succeed.

Fundamental Steps in DIP:
(Description)

Step 9: Representation and Description
- Representation: Make a decision whether the data should be

represented as a boundary or as a complete region. It is almost
always follows the output of a segmentation stage.
- Boundary Representation: Focus on external shape

characteristics, such as corners and inflections (انحناءات)
- Region Representation: Focus on internal properties, such

as texture or skeleton (ھیكلیة) shape

Fundamental Steps in DIP:
(Description)

Step 9: Representation and Description
- Choosing a representation is only part of the solution for

transforming raw data into a form suitable for subsequent
computer processing (mainly recognition)

- Description: also called, feature selection, deals with
extracting attributes that result in some information of interest.

Fundamental Steps in DIP:
(Description)

Step 10: Knowledge Base
Knowledge about a problem domain is coded into an image
processing system in the form of a knowledge database.

Components of an Image Processing
System

Network

Image displays Computer Mass storage

Hardcopy Specialized image
processing hardware

Image processing
software

Image sensorsProblem Domain

Typical general-
purpose DIP

system

App
Software

Motion
Controller Amp/Drive Motor

Position Voltage Current

Position Feedback

Elements of a Motion System

Mechanical

Feedback
Device

App
Software

Motion
Controller Amp/Drive Motor

Application Software

Mechanical

Feedback
Device

Software Overview

Configuration

Prototype

Application
Development
Environment

NI-Motion Driver for
LabVIEW,
Measurement Studio,
C/C++ Visual Basic

Motion Assistant

Measurement and Automation
Explorer

Configuring a Motion Control System
• Measurement &

Automation Explorer
– Use to configure all

National Instruments
devices

– Tune servo motors
– Test configuration
– Configure signal routing
– Test NI vision and data

acquisition devices

NI-Motion Driver Software
• For Windows and LabVIEW Real-Time Systems

– VIs and functions for LabVIEW, Visual Basic, and C
– Measurement and Automation Explorer

• Configuration of motion and other components
• Motor Tuning

• For Non-Windows Systems
– Motion Control Hardware DDK
– Linux and VxWorks drivers from Sensing Systems

(www.sensingsystems.com)

http://www.sensingsystems.com)

NI Motion Assistant Prototyping
Software

Configurable
• Easy to use
• Interactive
• No programming required

Programmable
• Flexible
• Easier integration with other

components

Purpose of the Motion Controller
• Calculate the trajectories for each commanded move on the

board to prevent host computer interference
• Provide the torque commands to the motor drive or amplifier
• Monitor limits and emergency stops for supervisory control
• Close the PID loop

Motor Drive Requirements
• The motor drive must match the motor technology

– For example, 2-phase stepper motors require 2 phase stepper
motor drives, etc…

• The motor drive must provide adequate:
– Peak current
– Continuous current
– Voltage

NI Motor Drive Products
• MID series Stepper and Servo drives

– MID-7604/2 four and two axis 1.4 Amp/phase stepper
drive

– MID-7654/2 four and two axis 5 Amp continuous servo
drive

• Universal Motion Interface (UMI) for easy connectivity to 3rd

party drives
• See Drive Advisor at ni.com/motion/advisors for info on third

party drives

• Computer purchased as part of some other piece of
equipment
– Typically dedicated software (may be user customizable)
– Often replaces previously electromechanical
components
– Often no “real” keyboard
– Often limited display or no general purpose display
device

• But, every system is unique there are always
exceptions

What is an Embedded System?

An Embedded Control System
Designer's View

• Measured by:
Cost, Time to market, Cost, Functionality, Cost & Cost.

What is OPC
• A “real world” application of object technology used to devise

a standard communication system to enable industrial plant
floor devices and business software applications to
communicate via a standard common protocol.

Communication
• Communication and integration of plant information systems:

– Many different plant floor devices and process control
software applications from many different vendors

– Business Information and Management software

Information Islands

Business Business
ManagementManagement

Process Process
ManagementManagementPlant Floor and Plant Floor and

Automation DevicesAutomation Devices

A Better Way: OPC
• The OPC Standard now places the burden on hardware

vendors to develop a single OPC “driver” (server) that is
responsible for data collection and distribution for their
device(s).

• Provide data to clients in a standard manor.

Client / Server Relationship

• Software developers can now write clients that can
communicate with hardware OPC servers using a common,
efficient protocol

OPC Client #1

OPC
Server

Vendor A

OPC
Server

Vendor C

OPC
Server

Vendor B
OPC Client #2

OPC Client #3

Technology (TLA Guide)
• COM - Component Object Model

– Provides objects as reusable, binary components
– objects “expose” a set of interfaces that client applications

can use to access the object’s services.
– Implementation is encapsulated behind interfaces (allows

object to change without requiring client recompilation)

Technology (continued)
• DCOM - Distributed Component Object Model

– remote objects appear to be local
• OLE - Object Linking and Embedding

– based on COM (e.g. an OLE object implements certain
COM interfaces)

– provides integration among applications

Technology (continued)

• OLE Automation
– Allows components to easily be used by high level

custom programs (e.g. written in VB or VBA)
– Set of special COM interfaces

• automation or ActiveX objects implement these
“automation” interfaces

– Automation Controllers
• Clients that can integrate those objects

OPC and COM
• OPC Specifications contain defined COM interfaces
• Server and Client Interfaces

– Data Access
– Historical Data
– Alarms and Events
– etc.

• Implementation and development

HMI /SCADA (Supervisory Control
and Data Acquisition) System

What is SCADA?
 Supervisory Control and Data Acquisition
 Supervisory
 Operator/s, engineer/s, supervisor/s, etc

 Control
Monitoring
 Limited
 Telemetry
 Remote/Local

 Data acquisition
Access and acquire information or data from the

equipment
 Sends it to different sites through telemetry
Analog / Digital

Elements of SCADA
Elements of a SCADA system
 Sensors and actuators
 RTUs/PLCs
 Communication
MTU
 Front End Processor
 SCADA server
 Historical/Redundant/Safety Server
 HMI computer
 HMI software

SCADA server
SCADA Server

 It can be a Web server
 Data logging
Analyzing data
 Serve the clients through a firewall
 Clients connected in the corporation or connected

outside through internet
 Real-time decision maker
Asks RTU for information

HMI Computer
Human Machine Interface Computer

Access on the SCADA Server
 Control the system
 Operator Interface
 Software
 User friendly
 Programmable (C, C++)

DCS
DCS – Distributed Control System

 Process oriented – tendency to do something
 Not event oriented – does not depend on
circumstances
 Local control over the devices
 Subordinate to SCADA

